PLC系统的正常供电电源均由电网供电。由于电网覆盖范围广,将受到所有空间电磁干扰而在线路上感应电压和电路。尤其是电网内部的变化,入开关操作浪涌、大型电力设备起停、交直流转动装置引起的谐波、电网短路暂态冲击等,都通过输电线路到电源边。PLC电源通常采用隔离电源,但其机构及制造工艺因素使其隔离性并不理想。实际上,由于分布参数特别是分布电容的存在,隔离是不可能的。
(4)来自信号线引入的干扰
与PLC控制系统连接的各类信号传输线,除了传输有效的各类信号之外,总会有外部干扰信号侵入。此干扰主要有两种途径:一是通过变送器或共用信号仪表的供电电源串入的电网干扰,这往往被忽略;二是信号线受空间电磁辐射感应的干扰,即信号线上的外部感应干扰,这是很严重的。由信号引入干扰会引起I/O信号工作异常和测量精度大大降低,严重时将引起元器件损伤。对于隔离性能差的系统,还将导致信号间互相干扰,引起共地系统总线回流,造成逻辑数据变化、误动和死机。PLC控制系统因信号引入干扰造成I/O模件损坏数相当严重,由此引起系统故障的情况也很多。
电磁干扰源及对系统的干
影响PLC控制系统的干扰源于一般影响工业控制设备的干扰源一样,大都产生在电流或电压剧烈变化的部位,这些电荷剧烈移动的部位就是噪声源,即干扰源。
干扰类型通常按干扰产生的原因、噪声的干扰模式和噪声的波形性质的不同划分。其中:按噪声产生的原因不同,分为放电噪声、浪涌噪声、高频振荡噪声等;按噪声的波形、性质不同,分为持续噪声、偶发噪声等;按声音干扰模式不同,分为共模干扰和差模干扰。共模干扰和差模干扰是一种比较常用的分类方法。共模干扰是信号对地面的电位差,主要由电网串入、地电位差及空间电磁辐射在信号线上感应的共态(同方向)电压送加所形成。共模电压有时较大,特别是采用隔离性能差的电器供电室,变送器输出信号的共模电压普遍较高,有的可高达130V以上。共模电压通过不对称电路可转换成差模电压,直接影响测控信号,造成元器件损坏(这就是一些系统I/O模件损坏率较高的原因),这种共模干扰可为直流、亦可为交流。差模干扰是指用于信号两极间得干扰电压,主要由空间电磁场在信号间耦合感应及由不平衡电路转换共模干扰所形成的电压,这种让直接叠加在信号上,直接影响测量与控制精度。
3.PLC控制系统中电磁干扰的主要来源有哪些呢?
输出阶梯设计图7b为输出阶梯,其结构与图4b相同,只是辅助继电器编号不同而已。
结束语
上述4种PLC顺序控制系统设计方法的共同特点是:
(1)由输入继电器控制辅助继电器(包括由置位/复位指令和移位指令定义的辅助继电器),按此构成步进阶梯;
(2)由辅助继电器控制输出继电器,以此构成输出阶梯
(3)无论步进阶梯还是输出阶梯,都是很有规律的回路结构。不管要设计的顺序控制系统有多少步,也不管其输入输出点数有多少,只要弄清各种设计方法所设计的步进阶梯和输出阶梯的回路结构的规律性,根据设计依据,套用其中任一种设计方法的回路结构,就能快速地一次成功设计出较复杂的PLC顺序控制系统。
图6 移位顺序控制流程图
图7 移位指令型顺序控制电路
设计这种步进阶梯时要注意以下问题:(1)在一个自动工作循环内,移位寄存器的移位数据输入端IN只允许起动时输入一个单脉冲信号。也就是说起动时只能输入移位数据“1”。步进阶梯的工作原理就是根据输入的数据“1”,在移位寄存器中逐步向高位移位来实现逐步得电和逐步失电。所以输入端IN要串联每个移位输出位的常闭触点;(2)移位寄存器对移位脉冲输入端开关的抖动非常敏感。若开关抖动一次,相当于多输入了一个移位脉冲,移位数据“1”随之多移了一位。由于接点式开关被触发时难免产生抖动。为这种影响,在移位脉冲输入端的步1输入回路,必须串联移位寄存器0位(本例为M20)的常闭触点,一旦移位数据移入M20位,便断开步1的输入回路;而从步2开始,每步的输入回路也要串联上一位的常开触点。例如步2的输入回路要串联上一位M20的常开触点。这样,当移位到步2转步主令信号对应的M21位时,便立即断开步2的输入回路。采用这样的移位脉冲输入回路结构,可确保每步的转步输入信号持续时间只有PLC的一个扫描周期(一般只有几Ms),因开关的抖动时间远大于PLC的一个扫描周期。所以可有效地开关抖动的影响。